If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35=95
We move all terms to the left:
5x^2+35-(95)=0
We add all the numbers together, and all the variables
5x^2-60=0
a = 5; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·5·(-60)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*5}=\frac{0-20\sqrt{3}}{10} =-\frac{20\sqrt{3}}{10} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*5}=\frac{0+20\sqrt{3}}{10} =\frac{20\sqrt{3}}{10} =2\sqrt{3} $
| 21+7x=-5 | | X+7=2x+9 | | 9.6-15.4=-4.3x+26.3 | | 3(n+4)=9 | | 1/4(4x+6)-7=-1/5(10x-15) | | 4x^2+2x(1000/2x^2)+4x(1000/2x^2)=0 | | 0=4x^2+2x(1000/2x^2)+4x(1000/2x^2) | | 1÷4x+1÷6x=1÷2+3÷4 | | 3(3x+3)=-4(4x-4) | | 5(x+5)+6=41 | | 20x+7(3+6x)=83 | | 4(3x-2)-8x+6=12 | | 7+3x=-7x | | 7+3x=-7 | | 2n^2-7n=400 | | 5x+1/5-25x+5/5+1=0 | | 4(b-1)+2(3+6)=8 | | 7(2m-1)-35m=65(4-3m) | | 3+4d-14=15-5d-4d= | | 3000=40x+5(1.5x) | | 0.5x(x+24)=56 | | (7x)/(9)+40=-23 | | -4(5+n)=12 | | S(t)=-5,600t+67,200 | | 5n+21=3n+23 | | 27+73=100+750x−365 | | 10x2+59x+76=0 | | 12n-6/3=4n-3 | | 5y/2=15/2 | | 5y/2=151/2 | | x2+-18x+34=0 | | 6n+9=-3n-21-6= |